Wireshark
4.5.0
The Wireshark network protocol analyzer
Toggle main menu visibility
Main Page
Related Pages
Topics
Namespaces
Namespace List
Namespace Members
All
Variables
Classes
Class List
Class Index
Class Hierarchy
Class Members
All
_
a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
Functions
a
b
c
d
e
f
g
h
i
m
o
p
r
s
t
u
v
w
Variables
_
a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
Enumerations
Files
File List
File Members
All
_
a
b
c
d
e
f
g
h
i
j
l
m
n
o
p
q
r
s
t
u
v
w
x
Functions
a
b
c
d
e
f
g
h
i
j
l
m
n
o
p
q
r
s
t
u
v
w
x
Variables
Typedefs
a
b
c
d
e
f
g
h
i
m
p
r
s
t
u
v
w
Enumerations
Enumerator
a
b
c
e
f
h
i
n
o
r
s
t
w
Macros
_
a
b
c
d
e
f
g
h
i
j
l
m
n
o
p
r
s
t
u
v
w
x
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Modules
Pages
Loading...
Searching...
No Matches
epan
exceptions.h
Go to the documentation of this file.
1
12
#ifndef __EXCEPTIONS_H__
13
#define __EXCEPTIONS_H__
14
15
#include "
except.h
"
16
#include <
wsutil/ws_assert.h
>
17
18
/* Wireshark has only one exception group, to make these macros simple */
19
#define XCEPT_GROUP_WIRESHARK 1
20
28
#define BoundsError 1
29
41
#define ContainedBoundsError 2
42
50
#define ReportedBoundsError 3
51
60
#define FragmentBoundsError 4
61
65
#define TypeError 5
66
76
#define DissectorError 6
77
87
#define ScsiBoundsError 7
88
93
#define OutOfMemoryError 8
94
102
#define ReassemblyError 9
103
104
/*
105
* Catch errors that, if you're calling a subdissector and catching
106
* exceptions from the subdissector, and possibly dissecting more
107
* stuff after the subdissector returns or fails, mean it makes
108
* sense to continue dissecting:
109
*
110
* BoundsError indicates a configuration problem (the capture was
111
* set up to throw away data, and it did); there's no point in
112
* trying to dissect any more data, as there's no more data to dissect.
113
*
114
* FragmentBoundsError indicates a configuration problem (reassembly
115
* wasn't enabled or couldn't be done); there's no point in trying
116
* to dissect any more data, as there's no more data to dissect.
117
*
118
* OutOfMemoryError indicates what its name suggests; there's no point
119
* in trying to dissect any more data, as you're probably not going to
120
* have any more memory to use when dissecting them.
121
*
122
* Other errors indicate that there's some sort of problem with
123
* the packet; you should continue dissecting data, as it might
124
* be OK, and, even if it's not, you should report its problem
125
* separately.
126
*/
127
#define CATCH_NONFATAL_ERRORS \
128
CATCH4(ReportedBoundsError, ContainedBoundsError, ScsiBoundsError, ReassemblyError)
129
130
/*
131
* Catch all bounds-checking errors.
132
*/
133
#define CATCH_BOUNDS_ERRORS \
134
CATCH5(BoundsError, FragmentBoundsError, ReportedBoundsError, \
135
ContainedBoundsError, ScsiBoundsError)
136
137
/*
138
* Catch all bounds-checking errors, and catch dissector bugs.
139
* Should only be used at the top level, so that dissector bugs
140
* go all the way to the top level and get reported immediately.
141
*/
142
#define CATCH_BOUNDS_AND_DISSECTOR_ERRORS \
143
CATCH7(BoundsError, FragmentBoundsError, ContainedBoundsError, \
144
ReportedBoundsError, ScsiBoundsError, DissectorError, \
145
ReassemblyError)
146
147
/* Usage:
148
*
149
* TRY {
150
* code;
151
* }
152
*
153
* CATCH(exception) {
154
* code;
155
* }
156
*
157
* CATCH2(exception1, exception2) {
158
* code;
159
* }
160
*
161
* CATCH3(exception1, exception2, exception3) {
162
* code;
163
* }
164
*
165
* CATCH4(exception1, exception2, exception3, exception4) {
166
* code;
167
* }
168
*
169
* CATCH5(exception1, exception2, exception3, exception4, exception5) {
170
* code;
171
* }
172
*
173
* CATCH6(exception1, exception2, exception3, exception4, exception5, exception6) {
174
* code;
175
* }
176
*
177
* CATCH7(exception1, exception2, exception3, exception4, exception5, exception6, exception7) {
178
* code;
179
* }
180
*
181
* CATCH_NONFATAL_ERRORS {
182
* code;
183
* }
184
*
185
* CATCH_BOUNDS_ERRORS {
186
* code;
187
* }
188
*
189
* CATCH_BOUNDS_AND_DISSECTOR_ERRORS {
190
* code;
191
* }
192
*
193
* CATCH_ALL {
194
* code;
195
* }
196
*
197
* FINALLY {
198
* code;
199
* }
200
*
201
* ENDTRY;
202
*
203
* ********* Never use 'goto' or 'return' inside the TRY, CATCH*, or
204
* ********* FINALLY blocks. Execution must proceed through ENDTRY before
205
* ********* branching out.
206
*
207
* This is really something like:
208
*
209
* {
210
* caught = false:
211
* x = setjmp();
212
* if (x == 0) {
213
* <TRY code>
214
* }
215
* if (!caught && x == 1) {
216
* caught = true;
217
* <CATCH(1) code>
218
* }
219
* if (!caught && x == 2) {
220
* caught = true;
221
* <CATCH(2) code>
222
* }
223
* if (!caught && (x == 3 || x == 4)) {
224
* caught = true;
225
* <CATCH2(3,4) code>
226
* }
227
* if (!caught && (x == 5 || x == 6 || x == 7)) {
228
* caught = true;
229
* <CATCH3(5,6,7) code>
230
* }
231
* if (!caught && x != 0) {
232
* caught = true;
233
* <CATCH_ALL code>
234
* }
235
* <FINALLY code>
236
* if(!caught) {
237
* RETHROW(x)
238
* }
239
* }<ENDTRY tag>
240
*
241
* All CATCH's must precede a CATCH_ALL.
242
* FINALLY must occur after any CATCH or CATCH_ALL.
243
* ENDTRY marks the end of the TRY code.
244
* TRY and ENDTRY are the mandatory parts of a TRY block.
245
* CATCH, CATCH_ALL, and FINALLY are all optional (although
246
* you'll probably use at least one, otherwise why "TRY"?)
247
*
248
* GET_MESSAGE returns string ptr to exception message
249
* when exception is thrown via THROW_MESSAGE()
250
*
251
* To throw/raise an exception.
252
*
253
* THROW(exception)
254
* RETHROW rethrow the caught exception
255
*
256
* A cleanup callback is a function called in case an exception occurs
257
* and is not caught. It should be used to free any dynamically-allocated data.
258
* A pop or call_and_pop should occur at the same statement-nesting level
259
* as the push.
260
*
261
* CLEANUP_CB_PUSH(func, data)
262
* CLEANUP_CB_POP
263
* CLEANUP_CB_CALL_AND_POP
264
*/
265
266
/* we do up to three passes through the bit of code after except_try_push(),
267
* and except_state is used to keep track of where we are.
268
*/
269
#define EXCEPT_CAUGHT 1
/* exception has been caught, no need to rethrow at
270
* ENDTRY */
271
272
#define EXCEPT_RETHROWN 2
/* the exception was rethrown from a CATCH
273
* block. Don't reenter the CATCH blocks, but do
274
* execute FINALLY and rethrow at ENDTRY */
275
276
#define EXCEPT_FINALLY 4
/* we've entered the FINALLY block - don't allow
277
* RETHROW, and don't reenter FINALLY if a
278
* different exception is thrown */
279
280
#define TRY \
281
{\
282
except_t *volatile exc; \
283
volatile int except_state = 0; \
284
static const except_id_t catch_spec[] = { \
285
{ XCEPT_GROUP_WIRESHARK, XCEPT_CODE_ANY } }; \
286
except_try_push(catch_spec, 1, &exc); \
287
\
288
if(except_state & EXCEPT_CAUGHT) \
289
except_state |= EXCEPT_RETHROWN; \
290
except_state &= ~EXCEPT_CAUGHT; \
291
\
292
if (except_state == 0 && exc == 0) \
293
/* user's code goes here */
294
295
#define ENDTRY \
296
/* rethrow the exception if necessary */
\
297
if(!(except_state&EXCEPT_CAUGHT) && exc != 0) \
298
except_rethrow(exc); \
299
except_try_pop();\
300
}
301
302
/* the (except_state |= EXCEPT_CAUGHT) in the below is a way of setting
303
* except_state before the user's code, without disrupting the user's code if
304
* it's a one-liner.
305
*/
306
#define CATCH(x) \
307
if (except_state == 0 && exc != 0 && \
308
exc->except_id.except_code == (x) && \
309
(except_state |= EXCEPT_CAUGHT)) \
310
/* user's code goes here */
311
312
#define CATCH2(x,y) \
313
if (except_state == 0 && exc != 0 && \
314
(exc->except_id.except_code == (x) || \
315
exc->except_id.except_code == (y)) && \
316
(except_state|=EXCEPT_CAUGHT)) \
317
/* user's code goes here */
318
319
#define CATCH3(x,y,z) \
320
if (except_state == 0 && exc != 0 && \
321
(exc->except_id.except_code == (x) || \
322
exc->except_id.except_code == (y) || \
323
exc->except_id.except_code == (z)) && \
324
(except_state|=EXCEPT_CAUGHT)) \
325
/* user's code goes here */
326
327
#define CATCH4(w,x,y,z) \
328
if (except_state == 0 && exc != 0 && \
329
(exc->except_id.except_code == (w) || \
330
exc->except_id.except_code == (x) || \
331
exc->except_id.except_code == (y) || \
332
exc->except_id.except_code == (z)) && \
333
(except_state|=EXCEPT_CAUGHT)) \
334
/* user's code goes here */
335
336
#define CATCH5(v,w,x,y,z) \
337
if (except_state == 0 && exc != 0 && \
338
(exc->except_id.except_code == (v) || \
339
exc->except_id.except_code == (w) || \
340
exc->except_id.except_code == (x) || \
341
exc->except_id.except_code == (y) || \
342
exc->except_id.except_code == (z)) && \
343
(except_state|=EXCEPT_CAUGHT)) \
344
/* user's code goes here */
345
346
#define CATCH6(u,v,w,x,y,z) \
347
if (except_state == 0 && exc != 0 && \
348
(exc->except_id.except_code == (u) || \
349
exc->except_id.except_code == (v) || \
350
exc->except_id.except_code == (w) || \
351
exc->except_id.except_code == (x) || \
352
exc->except_id.except_code == (y) || \
353
exc->except_id.except_code == (z)) && \
354
(except_state|=EXCEPT_CAUGHT)) \
355
/* user's code goes here */
356
357
#define CATCH7(t,u,v,w,x,y,z) \
358
if (except_state == 0 && exc != 0 && \
359
(exc->except_id.except_code == (t) || \
360
exc->except_id.except_code == (u) || \
361
exc->except_id.except_code == (v) || \
362
exc->except_id.except_code == (w) || \
363
exc->except_id.except_code == (x) || \
364
exc->except_id.except_code == (y) || \
365
exc->except_id.except_code == (z)) && \
366
(except_state|=EXCEPT_CAUGHT)) \
367
/* user's code goes here */
368
369
#define CATCH_ALL \
370
if (except_state == 0 && exc != 0 && \
371
(except_state|=EXCEPT_CAUGHT)) \
372
/* user's code goes here */
373
374
#define FINALLY \
375
if( !(except_state & EXCEPT_FINALLY) && (except_state|=EXCEPT_FINALLY)) \
376
/* user's code goes here */
377
378
#define THROW(x) \
379
except_throw(XCEPT_GROUP_WIRESHARK, (x), NULL)
380
381
#define THROW_ON(cond, x) G_STMT_START { \
382
if ((cond)) \
383
except_throw(XCEPT_GROUP_WIRESHARK, (x), NULL); \
384
} G_STMT_END
385
386
#define THROW_MESSAGE(x, y) \
387
except_throw(XCEPT_GROUP_WIRESHARK, (x), (y))
388
389
#define THROW_MESSAGE_ON(cond, x, y) G_STMT_START { \
390
if ((cond)) \
391
except_throw(XCEPT_GROUP_WIRESHARK, (x), (y)); \
392
} G_STMT_END
393
394
/* Throws a formatted message, its memory is cleared after catching it. */
395
#define THROW_FORMATTED(x, ...) \
396
except_throwf(XCEPT_GROUP_WIRESHARK, (x), __VA_ARGS__)
397
398
/* Like THROW_FORMATTED, but takes a va_list as an argument */
399
#define VTHROW_FORMATTED(x, format, args) \
400
except_vthrowf(XCEPT_GROUP_WIRESHARK, (x), format, args)
401
402
#define GET_MESSAGE except_message(exc)
403
404
#define RETHROW \
405
{ \
406
/* check we're in a catch block */
\
407
ws_assert(except_state == EXCEPT_CAUGHT); \
408
/* we can't use except_rethrow here, as that pops a catch block \
409
* off the stack, and we don't want to do that, because we want to \
410
* execute the FINALLY {} block first. \
411
* except_throw doesn't provide an interface to rethrow an existing \
412
* exception; however, longjmping back to except_try_push() has the \
413
* desired effect. \
414
* \
415
* Note also that THROW and RETHROW should provide much the same \
416
* functionality in terms of which blocks to enter, so any messing \
417
* about with except_state in here would indicate that THROW is \
418
* doing the wrong thing. \
419
*/
\
420
longjmp(except_ch.except_jmp,1); \
421
}
422
423
#define EXCEPT_CODE except_code(exc)
424
425
/* Register cleanup functions in case an exception is thrown and not caught.
426
* From the Kazlib documentation, with modifications for use with the
427
* Wireshark-specific macros:
428
*
429
* CLEANUP_PUSH(func, arg)
430
*
431
* The call to CLEANUP_PUSH shall be matched with a call to
432
* CLEANUP_CALL_AND_POP or CLEANUP_POP which must occur in the same
433
* statement block at the same level of nesting. This requirement allows
434
* an implementation to provide a CLEANUP_PUSH macro which opens up a
435
* statement block and a CLEANUP_POP which closes the statement block.
436
* The space for the registered pointers can then be efficiently
437
* allocated from automatic storage.
438
*
439
* The CLEANUP_PUSH macro registers a cleanup handler that will be
440
* called if an exception subsequently occurs before the matching
441
* CLEANUP_[CALL_AND_]POP is executed, and is not intercepted and
442
* handled by a try-catch region that is nested between the two.
443
*
444
* The first argument to CLEANUP_PUSH is a pointer to the cleanup
445
* handler, a function that returns nothing and takes a single
446
* argument of type void*. The second argument is a void* value that
447
* is registered along with the handler. This value is what is passed
448
* to the registered handler, should it be called.
449
*
450
* Cleanup handlers are called in the reverse order of their nesting:
451
* inner handlers are called before outer handlers.
452
*
453
* The program shall not leave the cleanup region between
454
* the call to the macro CLEANUP_PUSH and the matching call to
455
* CLEANUP_[CALL_AND_]POP by means other than throwing an exception,
456
* or calling CLEANUP_[CALL_AND_]POP.
457
*
458
* Within the call to the cleanup handler, it is possible that new
459
* exceptions may happen. Such exceptions must be handled before the
460
* cleanup handler terminates. If the call to the cleanup handler is
461
* terminated by an exception, the behavior is undefined. The exception
462
* which triggered the cleanup is not yet caught; thus the program
463
* would be effectively trying to replace an exception with one that
464
* isn't in a well-defined state.
465
*
466
*
467
* CLEANUP_POP and CLEANUP_CALL_AND_POP
468
*
469
* A call to the CLEANUP_POP or CLEANUP_CALL_AND_POP macro shall match
470
* each call to CLEANUP_PUSH which shall be in the same statement block
471
* at the same nesting level. It shall match the most recent such a
472
* call that is not matched by a previous CLEANUP_[CALL_AND_]POP at
473
* the same level.
474
*
475
* These macros causes the registered cleanup handler to be removed. If
476
* CLEANUP_CALL_AND_POP is called, the cleanup handler is called.
477
* In that case, the registered context pointer is passed to the cleanup
478
* handler. If CLEANUP_POP is called, the cleanup handler is not called.
479
*
480
* The program shall not leave the region between the call to the
481
* macro CLEANUP_PUSH and the matching call to CLEANUP_[CALL_AND_]POP
482
* other than by throwing an exception, or by executing the
483
* CLEANUP_CALL_AND_POP.
484
*
485
*/
486
487
488
#define CLEANUP_PUSH(f,a) except_cleanup_push((f),(a))
489
#define CLEANUP_POP except_cleanup_pop(0)
490
#define CLEANUP_CALL_AND_POP except_cleanup_pop(1)
491
492
/* Variants to allow nesting of except_cleanup_push w/o "shadowing" variables */
493
#define CLEANUP_PUSH_PFX(pfx,f,a) except_cleanup_push_pfx(pfx,(f),(a))
494
#define CLEANUP_POP_PFX(pfx) except_cleanup_pop_pfx(pfx,0)
495
#define CLEANUP_CALL_AND_POP_PFX(pfx) except_cleanup_pop_pfx(pfx,1)
496
497
498
499
#endif
/* __EXCEPTIONS_H__ */
500
501
/*
502
* Editor modelines - https://www.wireshark.org/tools/modelines.html
503
*
504
* Local variables:
505
* c-basic-offset: 8
506
* tab-width: 8
507
* indent-tabs-mode: t
508
* End:
509
*
510
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
511
* :indentSize=8:tabSize=8:noTabs=false:
512
*/
except.h
ws_assert.h
Generated by
1.9.8